Tests and improvements of GCM cloud parameterizations using the CCCMA SCM with the SHEBA data set

نویسندگان

  • Jian Yuan
  • Qiang Fu
  • Norman McFarlane
چکیده

A GCM cloud microphysics parameterization is tested and improved using the CCCMA single-column model with cloud properties obtained at the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) during the period of November 1997 to September 1998. The ECMWF reanalysis water vapor profile is scaled with rawinsonde data so that the new relative humidity profiles are compatible with rawinsonde data for nudging purposes. This study demonstrates that the treatment of ice nucleation number concentration is the controlling factor of the overestimation of monthly mean ice water path originally produced by this model. The parameterizations of accretion processes are modified to consider the accumulation due to an increase of precipitation flux through a model layer related to accretion processes. The horizontal inhomogeneity effect of cloud liquid water is considered in parameterization of autoconversion process. A new method developed for mixed-phase clouds to determine the water vapor saturation and partitioning of the condensed water into different phases is also tested in this model. When using a nudging technique with the adjusted ECMWF water vapor profile the model can well simulate the monthly total cloud cover and daily precipitation rate for the SHEBA period. Using the modified cloud microphysics parameterizations including improved treatments for accretion processes, ice nucleation number concentration, and auto-conversion, the monthly mean cloud liquid water path and ice water path are suitably simulated and compare reasonably well to those derived from measurements. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Analysis of CSU SCM Results From the SGP CART Site

Randall et al. (1996) summarized a strategy for testing parameterizations in single-column models (SCMs). The SCM is driven with observations and the results produced by the SCM are compared with additional observations of the same meteorological events. When the SCM’s parameterizations are judged to have performed satisfactorily in tests against observations, they can be transplanted into a th...

متن کامل

Evaluation of NASA GISS Post-CMIP5 Single Column Model Simulated Clouds and Precipitation Using ARM Southern Great Plains Observations

The planetary boundary layer turbulence and moist convection parameterizations have been modified recently in the NASA Goddard Institute for Space Studies (GISS) Model E2 atmospheric general circulation model (GCM; post-CMIP5, hereafter P5). In this study, single column model (SCM P5) simulated cloud fractions (CFs), cloud liquid water paths (LWPs) and precipitation were compared with Atmospher...

متن کامل

New Cloud-radiation and Hydrologic Cycle Parameterizations

The availability of new observational data from field programs has yielded new insights into the relationships between cloud microphysics and cloud radiative effects. Tests in single-column mode, carried out in the maritime tropics, in polar regions, and in mid-latitudes, have shown that parameterizations based on these new results can significantly reduce typical model biases in cloud-modulate...

متن کامل

Importance of Including Ammonium Sulfate ((NH4)2SO4) Aerosols for Ice Cloud Parameterization in GCMs

A common deficiency of many cloud-physics parameterizations including the NASA’s microphysics of clouds with aerosol-cloud interactions (hereafter called McRAS-AC) is that they simulate lesser (larger) than the observed ice cloud particle number (size). A single column model (SCM) of McRAS-AC physics of the GEOS4 Global Circulation Model (GCM) together with an adiabatic parcel model (APM) for i...

متن کامل

Relationship between drizzle rate, liquid water path and droplet concentration at the scale of a stratocumulus cloud system

The recent ACE-2, EPIC and DYCOMS-II field experiments showed that the drizzle precipitation rate of marine stratocumulus scales with the cloud geometrical thickness or liquid water path, and the droplet concentration, when averaged over a domain typical of a GCM grid. This feature is replicated here with large-eddy-simulations using stateof-the-art bulk parameterizations of precipitation forma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006